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BRIEF SUMMARY OF RESEARCH FINDINGS 

Professors Krasnoschekov and Savin arrived on schedule in San Diego on 
21 September 1993. Beginning that week, they and several faculty 
members at San Diego State University began a series of regularly 
arranged seminars. The seminars met generally three days per week for 
about 2-3 hours for each session. In between the planned seminars, there 
were informal meetings to discuss more about particular details of their 
presentation as well as several meeting devoted to the topic of how their 
understanding of the space-time combat model compared to the 
assumptions we made about it previously. 

The topics for the seminars were mutually agreed upon and contained a 
discussion of combat modeling, including a complete derivation and 
discussion of a the space-time combat model, a history of the recent 
development of combat modeling in the former Soviet Union, a discussion 
of systems of models and models for systems for representing complex, 
technical processes, a discussion of operations research techniques and 
applications to combat modeling problems, a description of a methodology 
for the optimal design of complex systems, including design of combat 
aircraft, and several other models that they were interested in explaining. 
The seminars were presented in an open, non-formal atmosphere with 
much discussion and interaction between the participants. Some problems 
of semantics were encountered between their terminology and ours, but 
after much discussion we believe we achieved a complete understanding 
of what they presented to us. 

In general, it was perceived that they presented a complete and honest 
account of their involvement with combat modeling, which they claim 
ended about 1979. Since that time they have mainly worked on problems 
associated with the design of technical systems. At the beginning, we did 
not make a connection between the combat modeling problems associated 
with the particular space-time model and the systems of models and 
hierachical structure of models presented in later seminars. Eventually it 
became apparent that the more complex systems of models are precisely 
what is needed to close the model equations in the space-time combat 
model and determine tactics which are in some sense optimal and 
feasible. It is now believed that this more extensive and elaborate system 
of models forms the basis for the staff-level model developed in the 
former Soviet Union in the 1970's. 
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This report is extracted from a more complete version of a report of an 
on-going and more extensive project that was sponsored by USA 
TRAC-WSMR through the Scientific Services Program and funded through 
Battelle. In addition to what is described here, that version also contains 
a listing of a program for solving the model equations and an analysis of 
numerical results The complete version can be obtained by request 
through Mr. Peter Shugart at TRAC-WSMR. 
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1. BACKGROUND AND PURPOSE OF THIS REPORT 

In the early 1970's, a space-time combat model was described by Yu. 
Chuyev[ 1 ] for homogeneous, large-scale forces on a two-dimensional 
battlefield. This model is a natural extension of Lanchester's equations to 
the case when the forces are not uniformily distributed or the battlefield, 
but may be concentrated in various regions according to density functions 
which measure force-equivalents per unit area. Since that time, such 
space-time combat models have been cited regularly in the Soviet 
military operations research literature and various attributes of the 
models have been claimed. Among these are that the models provide a 
rational basis for selecting optimal troop formations and that the 
outcome of the models conform well with certain historical data. In 
Chuyev's works, the model was never completely described or carefully 
derived, so that the exact assumptions could not be ascertained. Also, a 
procedure for solving the model equations was not given and it was also 
not clear which quantities in the models should be considered as unknowns 
and which are parameters. 

In a definitive book on model construction that appeared in 1983, P. S. 
Krasnoshchekov and A. A. Petrov [ 2 ] describe a space-time combat model 
of Chuyev's type. They provide a complete derivation of the model based 
on principles from fluid dynamics and continuum mechanics and also give 
a thorough and scientifically sound discussion of the interpretation of the 
quantities in the equation. This account provides much better insight into 
the assumptions behind the model and to its capabilities and limitations. 
There is no doubt that Chuyev and Krasnoschekov-Petrov are speaking 
about the same class of combat models. From now on this type of model 
will be called a space-time model for combat interactions . While 
Krasnoschekov's model is clearly a generalization of Chuyev's, they have 
the same essential characteristics and both are examples of a class of 
differential equations studied originally by L. Euler in the beginning of the 
18th century. 

In the first phase of this project, a numerical procedure (algorithm) was 
constructed for solving the partial differential equations of Chuyev's 
model in the case of a one-dimensional battlefield. The goal in this phase 
of the project is to extend this procedure to the two-dimensional case and 
provide an algorithm capable of solving the model equations on a PC or 
similar sized computer with a reasonably fast turn-around time.   To do 
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this several problems needed to be addressed. Some of these dealt with 
further assumptions necessary to complete the model. 

While the description of the model in the book of Krasnoshchekov-Petrov 
is far more substantial than Chuyev's initial account, it does not provide 
everything needed to run and test the model. These assumptions are 
related specifically to the functional forms for the velocity and attrition 
functions. The other major problems concerned developing numerical 
procedures that will solve the equations with reasonable accuracy and 
time. This problem is also dependent on how accurate the solutions need 
to be for certain applications and how quickly the solutions need to be 
computed. A subsequent problem that needs to be addressed is the 
stability of the model with respect to changes in the data and sensitivity 
of the model to non-smooth data. 

During the course of work on this project, a unique opportunity arose. This 
was created by a suggestion from Peter Shugart of TRAC-WSMR that it 
might be possible to invite P. S. Krasnoschekov himself to the USA to 
critique our work on the model and learn more from him about the 
development of combat modeling in the former Soviet Union. This 
additional project was funded by a grant through the US Army Research 
Office.. A letter was sent to Krasnoschekov in the summer of 1992, 
inviting him to come to San Diego for a period of 3 months during the fall 
of 1993 for the purpose of discussing his work on modeling of combat. 

He responded that while he would very much like to come, his knowledge 
of English was essentially non-existent, he had never before traveled to a 
Western country, and therefore was reluctant to accept our invitation. He 
then suggested that a colleague of his at the Academy of Sciences, 
Gennadiy I. Savin, was also knowledgeable about combat modeling, had a 
good command of English, and the two would be willing to come for 2 
months with no additional funding required; they would split the stipend 
that was originally intended for Krasnoschekov alone. Since this gave us 4 
man-months for the cost of the originally estimated and budgeted 3, it 
was acceptable to the Army and we agreed to the counter-proposal. 

In September of 1993, P.S. Krasnoschekov and G. Savin arrived in San Diego 
to begin their stay. During the course of it, they presented an intensive 
schedule of seminars on modeling interactions and also modeling large 
scale complex systems. It turned out that the latter topics also have 
significant application to modeling large scale military operations.    This, 
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as it turned out, provides not only the structure and logical apparatus in 
which the combat environment was modeled, but also provided a means for 
"closing" the original combat model, which was the source of our interest. 
Thus we not only learned more about the Chuyev model, but where and how 
this model fits into the decision-making process at the staff and 
operations level. 

In addition to these formal seminars presented by Krasnoschekov and 
Savin, there were extensive informal discussions of the Chuyev model and 
Krasnoschekov's role in its development Krasnoschekov gave us a 
personal history of his involvement with combat modeling from 19G4 until 
1979 and revealed to us a great deal about how the personalities involved 
interacted and the work proceeded. He also critiqued our approach, both 
with regard to assumptions we had made to close the model as well as his 
view of the difficulties in using numerical algorithms to calculate 
solutions. We also critiqued some of his views and together came to a 
better understanding of some of the critical problems for this model. 

The purpose of this report is to first discuss the impact of the newly 
acquired information, to give a current status in the space-time model, 
specifically where we now stand with regard to the assumptions made to 
close the model, and where and how the resulting solutions should be 
used. As a result of the seminars, there are approximately 300 
transparencies which were left with us, many in the original Russian, 
and a manuscript for a book (also in Russian) for further models for long 
range combat. Also, a log was maintained of the daily activities in the 
seminar and our impressions of what was presented. This log is included 
in the complete version of the   report supplied to USA-TRAC. 
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2. HISTORY AND RECENT DEVELOPMENT OF COMBAT MODEUNG IN THE FORMER 
SOVIET UNION ACCORDING TO P.S. KRASNOSCHEKOV 

Professor Pavel S. Krasnoschekov is currently an Academician in the 
Computing Center of the Russian Academy of Sciences in Moskow, its 
Deputy Director, and also Head of Department of Mathematical Modeling of 
Systems and Decisions. This places him in the uppermost echelon of 
academics in Russia and in an influential position as the chief of from 800 
to 1000 mathematicians, physicists, and computer scientists involved in 
modeling a wide variety of activities from economic to physical to 
military. He has been intimately involved in the development of the 
so-called continuous modia, time-space model for combat interactions 
since its inception. This involvement is attested to in N. N. Moiseyev's 
book [ 3 ] and it would not be unrealistic to point to Krasnoschekov as 
Moiseyev's hand-picked successor. 

In the course of discussions of combat modeling in the former Soviet Union 
and how it evolved, the following history was compiled. It reflects, of 
course, some of Krasnoschekov's prejudices and biases, but based on other 
collateral evidence, it seems to be an accurate summary. 

1964: Krasnoschekov received his Ph.D. from Moskow's Steklov Institute, 
majoring in classical applied mathematics, specifically gas and fluid 
mechanics. He was then recognized by Moiseyev and invited to join the 
Computer Center of the Soviet Academy of Sciences (CCAS), where the 
monetary rewards far exceeded that from other academic jobs. 

1965: Krasnoschekov began work at the CCAS. His main jobs were 
to work with Petrov on economic modeling and with a group lead by 
Moiseyev on military modeling. 

1966: In a seminar at the CCAS, Lebedev presented some empirical results 
and a conjecture on the relationship between the rate of movement of the 
front line and the ratio or correlation of forces, which was based on some 
historical data, some from the Napoleonic wars. In the ensuing discussion, 
Krasnoschekov indicated that a factor is missing in Lebedev's conjecture 
and in the presence of Chuyev and Kuzmin suggested that there should be a 
continuous, space-time model for combat, analogous to the Euler 
equations of fluid mechanics, which might account for such relationships. 
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1967: In another seminar at the CCAS, Chuyev and Kuzmin wrote down 
"their" equations, which turned out to be analogous to the well known 
Euler differential equations of fluid mechanics. Upon hearing that there 
was no derivation, justification, or even complete description or 
understanding of these equations, Krasnoschekov soundly criticized 
Chuyev and Kuzmin. After being silenced by Moiseyev, Krasnoschekov 
began work on a systematic derivation of some equations for a continuous 
media, space-time model for combat using some principles analogous to 
the development of continuum mechanics from the Boltzmann equations. 
After deriving these equations, Krasnoschekov was able to derive a 
functional relationship similar to Lebedev's as a first approximation to 
the relative rate of motion of the frontline, subject to certain simplifying 
assumptions. 

1968: As a result of this work, which was judged the best of the year 
from the CCAS, Krasnoschekov was invited to present his results to the 
Presidium of the Academy of Sciences. 

1970: Krasnoschekov was surprised by the appearance of Chuyev's book [1] 
in print for two reasons. First, because he had thought that the equations 
were in some sense "classified", and secondly because there was no real 
justification and the model described was as incomplete and ambiguous as 
Chuyev's and Kuzmin's original presentation back in 1967. 

1971: G. Savin received his M.S. degree under Krasnoshekov's direction 
which began their joint involvement in military operations research. 

1975: Krasnoschekov and Petrov began their book [2] on Mathematical 
Modeling, based on lectures at the CCAS and Moskcw State University. 
Krasnoschekov used as justification for his chapter on combat modeling 
(modeling of conflict interactions) the fact that Chuyev already published 
the equations in the open literature. 

1977: G. Savin completed his Ph.D. under Krasnoschekov's direction. This 
involved Systems of Models for large-scale, complex processes with 
applications to combat modeling. It reflected a new direction taken by 
Krasnoschekov in his research, which involved a greater use of operations 
research techniques and a lesser role on classical applied mathematics 
and differential equations. 
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1979: As a result of a Ph. D. thesis by a military graduate student of 
Savin, an implementation of the System of Models approach was made for 
operations at the Theater level. This required coding about one million 
lines of ALGOL and involved some extensive trials. A copy of this model 
supposedly still exists in the CCAS and is used from time to time. In one 
allusion to the model, Krasnoschekov told us about a trial pitting the 
model against a staff of "experts" (using their traditional approach), who 
both analyzed and planned an operation. The experts arrived at a different 
solution, which Krasnoschekov proved was neither optimal nor feasible, 
whereas using the model provided an "optimal" variant in some sense 
which the experts later acknowledged. After this, Krasnoschekov and 
Savin claimed to lose interest in combat modeling due to lack of funding 
by the military and because of opportunities to use their theory for 
projects in the design and control of complex technical processes. For this 
work and its application to the design of the SU-27 aircraft, 
Krasnoschekov received a prize as Hero of Soviet Workers. 

1992: Krasnoschekov receives offer to visit San Diego to consult on 
combat modeling problems. He first believes this to be practical joke by 
some of colleagues in the CCAS. 

1993: Krasnoschekov and Savin arrive in San Diego and begin again, after a 
period of 14 years, some joint work and discussions on combat modeling 
problems. 
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3. CURRENT STATUS OF THE SPACE-TIME MODEL 

The equations which Chuyev and Kuzmin wrote down and also the ones 
derived by Krasnoschekov can be classified as Euler-type differential 
equations. There are several ways to derive such equations for a combat 
model. One way is to think of the amount of force-density moving into a 
small region, the amount moving out, and the amount destroyed due to 
enemy action. Another way is to proceed from the discrete, microscopic 
level to the continuous, macro level by stochastic averaging, similar to 
the derivation of the fluid equations in continuum mechanics. A special 
advantage of the latter approach (followed by Krasnoschekov) is that the 
attrition-producing terms in the macro-level equations are a direct 
consequence of the assumptions made at the micro-level and even the 
parameters which enter into the continuous media equations can, in 
principle, be traced to quantities and assumptions concerned with the 
attrition producing terms at the micro-level. Even more importantly 
according to Krasnoschekov, is that certain "averaging parameters" 
naturally enter into the final result, which influence the resolution and 
interpretation of the validity of the solutions of the continuous media 
equation.   For a derivation of the equations, see Chapter 13 of [ 2 ]. 

In addition to the so-called Euler equations for homogeneous combat units, 
Krasnoschekov has also discussed analogous equations in the case of a mix 
of heterogenous forces. The equations look rather similar and this writer 
does not understand any reai theoretical distinction between the two 
cases, since all quantities and parameters in the equations can also 
depend upon position. As long as the assumption that no two distinct 
types of forces could simultaneously occupy the same ground, it is 
possible to rewrite the Euler equations from a heterogeneous situation 
into a homogeneous one by just renaming the density functions. But this 
may not necessarily be so practical or convenient, because the 
heterogeneous model would display a natural and important decomposition 
of forces and means. Here, we will treat only the case of homogeneous 
forces, but the*9 methods, techniques, and analysis can be directly 
extended to the more g6.ieral (in some sense)  case. 

The Euler equations for the continuous media, space-time homogenous 
equations have the general form: 

dp/at  + div (p U) = - fe 

dpe/dt  + div (pe U) = - f   . 
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In these equations, p and pe represent the density of forces per unit 

area, with the subscript "e" denoting "enemy" forces. They are assumed to 
depend upon time t, and the spatial variables x and y. The quantity U is 
the velocity vector of the field, having two components in general and the 
symbol "div" denotes the divergence of the vector field. Lastly, the 
quantities   f   and fe    on the right hand sides are known as the attrition- 

or destruction- producing terms. Without them, the equations would 
represent the flow of two non-viscous, compressible fluids without 
sources or sinks. These are essentially the same equations written down 
by Chuyev and Kuzmin, but they expanded the divergence term using the 
usual definition as a sum of partial derivatives with respect to Cartesian 
coordinates x and y. There are good practical reasons for not doing this, 
however, and treating the divergence as a single expression rather than a 
sum. This will be discussed again in the section on numerical algorithms. 
After having written down these equations, there are a number of natural 
problems whicn arise immediately: 

a. What assumptions, beyond those mentioned already above, are 
implicitly made about the combat model when these equations are used? 

b. How can the model or the equations be "closed"? 

c. How can the equations be solved? 

d. What do the solutions mean? 

e. Where and how should this information be used? 

In the remainder of this section, these problems will be addressed as well 
as a discussion of Krasnoschekov's critique of what we had previously 
done and our response to the issues he raised. 

a.  The Euler Equations. 

There are no extra or hidden assumptions in the equations beyond those 
mentioned above. They simply represent "conservation laws" for the 
forces involved. Not even the assumption that the forces are separated is 
implicit in the equations. The real assumptions involve the next step of 
"closing" the model, which is where the real work is involved. 
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b.  Closing the Model. 

To close the model means to add assumptions or extra conditions so 
that the equations will have one and only one solution, which represents 
the averaged densities cf the forces as combat develops. There are 
several such assumptions or specifications to be made. A main one is to 
decide what the attrition-producing terms depend upon and to determine 
how to calculate them. A second assumption concerns the velocity vector 
U of the flow and how to obtain it. A third concerns choosing appropriate 
boundary and initial conditions on the density functions. Krasnoschekov's 
derivation produces a function of the form 

f(t, x,y,p,pe) • c JJ P(hit at (x,y))(rate of fire)(average of firing units) dA. 

This is a symbolic formula, but it does contain some assumptions. One is 
that the number of casualties is directly proportional to the number of 
enemy units firing at a particular point. The double integral just means 
that the units which can fire on position (x;y) are averaged with respect 
to their target priorities and rates of fire, with the casualties in this 
homogeneous situation then just being a constant times this amount. The 
constant is sometimes called the combat effectiveness coefficient and 
corresponds to the probability of a kill, given that the target was hit. This 
constant also needs to be determined in closing the model and how this 
can be done «s briefly discussed in the   section on Systems of Models. 

The next quantity that needs to be determined is the velocity of the flow. 
According to Krasnoschekov, this must be treated as a control parameter 
in the model. The reason for this, as opposed to situations in physics, is 
that while nature usually acts in some optimal way, there is no reason to 
assume the same about combat, where human decisions are a major factor. 
A force, even with great numerical superiority, could decide to stay put or 
even withdraw according to the commander's wishes.   So there is no 
natural way to determine what this will be and the equations themselves 
do not yield any information about this. To determine whit the velocity 
should  be,  it  is  necessary  to  "synthesize"  a  variant that  meets the 
assigned objectives of the operation.     Moreover, the selection of the 
variant should be accomplished in a way that meets certain optimality 
criteria identified by the commander.   More about this will be said in the 
next section on Systems Of Models. 
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At this point it is germain to mention Krasnoschekov's work on Lebedev's 
conjecture. What he actually showed is that if forces are being "pumped" 
toward the front in such a way that no separation or overrunning of the 
two forces is allowed (i.e., a unique "frontline" is maintained), then (in the 
first approximation, modulo SOITW other conditions) the front will move at 
a rate proportional to the rate at which the forces of the attacker are 
moving toward the front, where the proportionality factor depends upon 
the correlation of forres. The functional relationship is given by a 
so-called "Witch of Agn„si" curve. (See [ 2 ], Chapter 13, for a proof of 
this  statement.) 

The expression given by Chuyev for main component of the velocity vector 
is essentially of this type, but with an incorrect interpretation. In 
Krasnoschekov's derivation he obtains an expression for the relative 
velocity of the frontline with respect to the rate at which the forces are 
being pumped toward it, whereas Chuyev claims that the forces 
themselves should (by some unknown reason) move with a velocity that is 
proportional to the maximum that the force would be capable of moving if 
it were completely unopposed. Krasnoschekov said this statement has no 
validity and is   utter nonsense. 

Finally, after the attrition producing terms and velocity vectors have been 
determined, the zone of combat should be specified (say with fixed lateral 
boundaries) and initial densities distribution of both forces at the 
beginning of combat should be specified. There are natural smoothness 
conditions that should be observed for the initial densities just because 
the equations contain partial derivatives, which must exist, but also for 
the solution to be computable it is necessary that the densities not be too 
wild. 

c. Solving the Equations. 

There are two possiblities for solutions of the equations, once the model 
has been closed properly. One possibility is to obtain a closed-form, 
explicit solution, say as some elementary function. For such equations 
such explicit solutions are highly unlikely. Nevertheless, Krasnoschekov 
has found some in the one-dimensional (only one spatial component) case 
under some very stringent assumptions on the shape of the density 
functions, the probability of a hit (target distribution function), the rate 
of fire,   and the rate of movemeni of the forces.   These he calls "analytic" 
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solutions, which is not consistent with Western terminology, which 
would use the same term in another sense. Be that as it may, it is 
interesting that such explicit solutions exist. Briefly, what is needed is 
that the densities are decreasing exponentials and the other quantities in 
the attrition function are such that the solutions will also be decreasing 
exponentials (both as one moves away from the front as well as in time). 
Maybe this is somehow expected because in the spatially independent case 
of Lanchester's equations, the solutions are also decreasing exponentials. 
Krasnoschekov values these solutions greatly because they enabled him to 
show Lebedev's relation, but in our opinion he has placed too much 
emphasis on them. When he was asked what to do in other cases (when the 
densities are not like this) he first responded that one could make an 
expansion using a sum of such exponentials. But when we disputed this 
claim, saying that the required calculations would even be more difficult 
than a numerical solution, he recanted and was not so certain. Also, it 
was pointed out to him that while it worked luckily in one spatial 
dimension, it was much more unlikely to work in two, without some even 
more stringent and un-motivated assumptions. So it is by no means clear 
that this approach can be of any help in yeneral. 

An alternative is to compute solutions numerically, that is at certain grid 
points in space and time. This is usually the most that one can expect for 
solutions of partial differential equations, especially ones of the above 
type. All numerical procedures basically involve replacing the 
differential equations by a system of algebraic equations with a finite 
number of unknowns. Some ways to bring this about is to replace the 
derivatives by certain differences and the integral by some finite 
approximation. There are many different ways to do this and most will 
lead to undesirable situations which are either unstable numerically, 
ill-conditioned, or both. Moreover, most methods will suffer from the fact 
that while the exact differential equations are conservation laws, the 
approximate system of equations, in general, will have solutions that no 
longer conserve total mass. Depending upon whether the approximate 
equations immediately determine the updated values of the solutions, or 
whether one needs to solve the system of equations to obtain the new 
values, the method is called either "explicit" or "implicit". 

An advantage of explicit methods is speed of calculation, whereas 
implicit methods can take a great deal more time since the solution of the 
system of equations at each iteration involves an extra step.   The amount 
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of work increases significantly with a decrease in the grid-size and the 
resolution of the model. 

The first approach we used in the one spatial dimensional case was based 
on the Lax-Wendroff approach, an explicit numerical method. The 
algorithm obtained is especially fast and requires very little storage, 
however it some serious drawbacks. A major one is that to make the 
method stable, it is convenient to link the time step size with the spatial 
step size. This is not a problem with one spatial dimension, but does not 
extend naturally to two dimensions. Another is that it does not conserve 
mass very well and it is also quite sensitive to perturbations in the data. 

The second approach, which works quite nicely for two spatial dimensions 
and has relatively good numerical behavior is based on the 
Crank-Nicholson method. This is an implicit method that requires solving 
a system of linear equations to obtain the updated densities. In order to 
make the calculations fewer and quicker, a modified method was 
developed which uses the full scope of the Crank-Nicholson approximation 
for derivatives in the direction of the main component of the velocity 
vector, but uses a simplified approximation for other, lesser, component. 
This results in a tridiagonal system of linear equations which can be 
solved using a very fast and efficient algorithm. Another simplification of 
the procedure is to calculate the attrition term using only values of the 
densities at the previous time-step, as opposed to the current time step. 
As long as the time interval is sufficiently small, for example, smaller 
than the average time between firing and its effect of creating a casualty, 
then such an assumption seems reasonable and greatly reduces the cost of 
calculating the up-dated solution. 

Some extensive tests were made using this algorithm and it proved to be 
an acceptable means for calculating the solutions within a certain degree 
of accuracy and with relatively good conservation of mass properties. 
This means that the algorithm could be valuable in the so-called 
"synthesis" mode of the Systems of Models, where a relatively good and 
fast calculation is required, but is probably not good enough for the 
"analysis" or reproduction mode, which requires more accuracy with not 
nearly the emphasis on speed of calculation. This was discussed with 
Krasnoschekov and he concurred with that assessment. 
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In the 1980's another method which gives rise to numerical algorithms for 
calculating solutions of certain types of partial differential equations 
was developed in the former Sovio* Union, particularly at the Competing 
Center of the Academy of Sciences, it is especially designed to work very 
well on equations which are composed of expressions such as the 
divergence operator, and in particular, equations that are of conservation 
type. A main feature of the method is that it is specifically designed so 
that the difference scheme also conserves mass. (Most difference 
schemes such as those discusses above will not satisfy this property.) 

The basic idea is that to generate a difference scheme, all the quantities 
in the differential equations are first rewritten in terms of some "basic" 
operators, such as the divergence operator, using some standard types of 
vector-calculus identities Then each one of these basic operators is 
approximated, not by the usual difference type scheme that is associated 
with its representation as a derivative, but instead with an approximation 
arising from its corresponding invariant integral representation. This 
creates, of course, a significantly more complex coefficient matrix for 
the system of linear equations to be solved. The are many ways to choose 
grid points for the integral approximation and this is where the developer 
can have some positive or negative impact on the result. 

Another "variable" in the method is to choose an algorithm for solving the 
system of linear equations which is compatible and well suited to the 
particular structure of these equations. Both of these choices can have a 
substantial impact on the overall accuracy of the method and the speed of 
calculation. While on a supercomputer, these problems may not be 
significant for equations of the type we are considering, to make the 
calculations on a slower and smaller computer requires that an extra 
effort be made on the numerical analysis before the arithmetic operations 
are performed. It is exactly this type of analysis which was and still is 
being emphasized in the former Soviet Union. The development of a 
numerical algorithm based on this so-called "support operator" approach 
was beyond the scope of the currently funded project when we learned 
about it and its relation to the solution of differential equations of the 
type being considered. Not only would the algorithms themselves have to 
be redesigned, but this would require completely new subroutines to be 
coded, tested, and evaluated. 
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d. Meaning of the solutions. 

According to Krasnoschekov's derivation, either the exact, analytic 
solutions of the equations or their numerical approximations represent 
"averaged densities" of the forces with respect to certain time and space 
averaging parameters. The meaning of the averaged densities is that of 
expected value. The averaging parameters come about and can be 
calculated based on the explicit assumptions and form of the attrition 
terms. For example, the sizes of the regions for effective fire, the 
accuracy parameters for the weapons, and the p obability of a kill given a 
hit will influence them. These averaging parameters restrict considerably 
the range of validity in which the solutions can and should be used as 
faithful representations of the combat situation. Krasnoschekov is aware 
of the debate over whether a deterministic model can represent the 
expected value for the solutions of a stochastic model. He claims within 
the range of validity specified by the averaging parameters, the solutions 
of the deterministic model are indeed the expected values. On the other 
hand, he did not show how to prove this or give a probabilistic error 
estimate for the variance from the expected value. 

e. Using the solutions. 

The equations for the space-time model should be used, according to 
Krasnoschekov, in a "narrow band" of the front line, also called the zone 
of "nearest interaction", where forces fire and manuever continuously and 
all forces are within effective range of the opposing forces. This does not 
mean that the equations are invalid for any particular reason farther away 
from the front line, just that they are unnecessarily complicated, and 
simpler, nonpartial differential equations may be used instead there to 
obtain equivalent results. These other zones of combat and the equations 
will be discussed in the next Section on Systems of Models. The particular 
parameters associated with this zone of nearest interaction are not fixed, 
but depend on tactics and accuracy of weapons. Krasnoschekov indicated 
that in the 1970's. this zone of nearest interaction was considered to be 
only several (maybe 3-5) kilometers wide for a combat model at the Front 
(theater) level. This seems to be rather narrow by modem day standards of 
weapons accuracy and mobility, but nevertneless it indicates that the 
depth of forces is much less than previously imagined. For combat at 
lower levels, the depth of this zone of nearest interaction will generally 
decrease. 
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SUMMARY OF KNOWLEDGE OF THE SPACE-TIME COMBAT MODEL 

1) The equations should be used for "nearest interaction" combat. For 
combat in the other zones, less complicated models are used. 

2) Some of the assumptions that were used to complete the model are 
consistent with Krasnoschekov's approach, but his idea is that the 
velocity and some of the quantities entering the attrition function should 
be treated as control variables. For simplicity some of these were taken 
as constants in closing the model in our procedure, but it would be an easy 
modification to put in any other expressions, say for the firing rates and 
target  distribution  functions. 

3) The differential equations can be solved explicitly in one spatial 
dimension and under certain very restrictive assumptions on the density 
functions. This does not seem to be possible in two dimensions and for 
other types of density functions an expansion or approximation technique 
would likely be as complicated or m^re so than solving the equations 
numerically. 

4) A numerical algorithm for solving the equations based on the Crank- 
Nicolson approach has been coded and is operational. The results are good, 
but do not reflect the required conservation of mass that one would need 
for a high resolution application. A better approach for this purpose is 
now known, but it has not been applied to solve these problems. 
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4. OVERVIEW OF MODELS OF SYSTEMS AND SYSTEMS OF MODELS 

As mentioned in Section 3, the space-time model for combat is just one 
of a set of models to depict combat losses at the front (theater) level. 
Krasnoschekov has proposed decomposing the area of operations into three 
zones of combat with corresponding models appropriate to those zones. 
The first is the zone nearest the frontline, called the zone of "nearest 
interaction", in which all forces are more or less equally vulnerable to 
other similar forces and forces fire and manuever simultaneously. This 
would include mainly various types of infantry units and tank units. For 
this zone either a homogeneous space-time model as described above in 
Section 3 or a heterogeneous analog of it could be used. The 
heterogeneous analog was described in other works by Krasnoschekov 
which were presented to us. 

The next closest zone of combat is called the zone of "medium interaction" 
and includes longer range artillery and combat forces which are being 
brought forward to the zone of nearest interaction, but which do not 
necessarily have the means of creating casualties at that range, only 
sustaining them. Principally they move forward according to some scheme 
of manuever and eventually reach the closest zone after sustaining some 
losses. In this zone, fire and manuever can be treated independently and 
for the purpose of modeling this kind of attrition, a system of generalized 
Lanchester equations is suggested. These are used to portray 
counter-battery fires, fires of artillery against infantry and tank units, 
and any other types of longer range interactions. Some degree of 
interdiction against support units would also be included here. In this 
zone a major role would also be played by an optimization model to 
maximize the effect of the artillery, for example, on the available 
targets   given the available resources. 

The zone of "farthest interaction' corresponds to very long range artillery 
or rockets using weapons of mass destruction (i.e., nuclear fire) for fire 
against significant targets in the nearer zones. For this purpose, and 
because these casualties take place in a short time interval, a relatively 
simple one-sided attrition model may be used to calculate the effects of 
this level of combat. Another type of model Krasnoschekov indicated was 
used here was a decision model based on game theory to decide the 
optimal times to use such weapons, given probable consequences for 
initiating the use of them. 
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In addition to these kinds of models, a large number of supporting sub­

models are required, for example, to calculate movement of forces, 

supply, to account for variable factors such as weather, terrain, and also 
uncertainties caused by Jack of information. 

The natural problem arises of how to construct a comprehensive system 

so that all the models at the various levels can interact appropriately 

with each other and be used to plan and predict the outcome of a 

large-scale operations. In particular, such a system would be used to 

select a variant of a plan that meets certain criteria specified by the 

commander, determine the missions of subordinate units, and accomplish 

this in a manner which is in some sense "optimal", based on criteria 

established by the decision maker. This is a problem in the design and 

control of large-scale complicated technical systems, which was a much 

studied subject in the 197o•s in the former Soviet Union due to a large 

variety of potential applications for industrial processes, centralized 

economic planning, and military operations. A solution involves what 

Krasnoschekov and Savin call a System of Models and Models of Systems. 

For this they have developed a comprehensive theoretical basis, designed 

procedures for making the required calculations, and have constructed 

software for the implementation. 

The basic idea is to create a hierachical system of models at various 

levels which are strongly inter-connected and self-similar at the levels. 

A military command structure is particularly well suited to this approach. 

The system is designed to operate in two types of modes, called 
11Sythesis 11 and "reproduction•• ( or 11 analysis") . Basically, the synthesis 

mode determines a variant of an operational plan that should meet the 

objectives. The reproduction mode then predicts an expected outcome for 

the selected objective. It is important to realize that these two modes 

are highly interrelated and interdependent, not separate and independent 

events. ..Without analysis, there can be no synthesis·., according to V. 

Lenin. This means that they can•t decide on a ••best11 variant without 

making some calculations that indicate that the variant has a chance of 

working and to supply the decision-maker with some rough calculations 

and options to support making a choice. 

For the synthesis mode, the calculations are not required to be as exact 

or accurate as in the reproduction mode. The reason for this is that for 

synthesis it is only necessary to distinguish between two variants or to 
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determine if a variant is feasible, while in the reproduction phase a 
more exact or accurate solution is required that will more closely "track" 
the expected outcome. In particular, for the zone of nearest interaction, 
the degree of accuracy of a solution for the space-time equations does 
not need to be as great as for the corresponding calculations required in 
the   synthesis mode. 

On the other hand, to be useful they must be fast. Krasnoschekov and 
Savin mentioned that all calculations in support of the synthesis mode 
must be done in at least real time. This is because a large number of 
variants must be checked and the results used by operator/ controllers in 
a man/machine interactive loop. So in the synthesis mode accuracy is 
sacrificed for speed and a fast numerical method giving a relatively good 
approximation is preferred over a more exact, but slower method. 

in the hierarchical structure, an operation at the front (theater) level 
involves systems for modeling at that level, at the Army level, and 
down to division level, by reason that a three-level span of control is the 
largest that is practical. For the corresponding planning operation at the 
lower levels, another system of three analogous models is created. To 
support these models it is necessary to solve problems of disaggregation 
and aggregation to relate the results of the calculations between the 
various levels at various levels and determine the parameters needed for 
the model equations. This is important in the implementation of the 
model since it relates the combat effectiveness parameters at one level 
to those at higher and lower levels. So in particular, if the coeffients at 
one level are known, they can be determined at the other levels. 

This seems to work easily as long as the models are all deterministic 
differential equations. For the models corresponding to the lowest levels 
of combat the differential equations are stochastic. Krasnoschekov 
indicated that he had considered the coefficient aggregation problem from 
stochastic to deterministic equations and knew how to solve it, but did 
not explicitly discuss the solution in the seminars. Presumably, this is 
closely related to the derivation of the deterministic equations and the 
representation of the attrition-producing function in his book [2] and in 
the new material   he presented. 

In addition to this top-down, bottom-up structure of the system of 
models, there is   also a   kind of horizontal structure,   coming from   a set 
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of task- related activities that forces at that level could engage in. The 
structure of models described in the seminar lectures and notes reflect a 
systematic, logically well-conceived and developed approach, but the 
details and interconnections between the submodels and decision rules 
for implementing the system of models are   still   incomplete. 

As a consequence of synthesis mode, a variant of the operational plan is 
selected. It includes a plan for allocating resources to the battle and 
expected rates of advance, etc. In particular, the outcome produces the 
velocities required to close the space-time model in the sense that it 
provides an estimate for the forces that can be introduced into combat in 
the zone of nearest interaction at various times and how they should be 
allocated and their velocity controlled to achieve the objective. 

Another important feature of the system of models described in the 
seminars related to creating a common time-line for decision making and 
interface between the models at different levels. This is important in 
setting up communication between models at different levels and 
different models at the sa - level, indicating when certain calculations 
have to be performed and  Decisions  made  based on  them. 

In addition to the deterministic stucture of the model, a significant 
effort was made in the System of Models to account for uncertainties on 
the battlefield and how to effectively deal with them. These included, 
for example, uncertainties created by lack of intelligence on enemy order 
of battle and enemy intentions and uncertainties due to friendly 
communications and control. The basis for treating these uncertainties 
and having to make decisions in spite of them was laid on a foundation of 
game theory. Another feature of this part of the analysis involved 
considering games when two players dc not necessfrily have opposite 
interests in mind. 

As indicated above, our present knowledge of the System of Models 
described in the seminars by Krasnoschekov and Savin is not complete in 
all aspects, but enough was discussed and defended so that the general 
impression was that such a System was based on a solid theoretical 
foundation and the missing pieces were likely to be constructable. The 
following is a summary of some of the salient points of this approach: 
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1) The problems solved in the System of Models are very strongly tied to 
the problems of closing the space-time model discussed in Section 3. In 
particular, the questions of how to choose the velocity functions and how 
to identify the parameters are handled with this procedure. 

2) In using the model for operational planning, the results of the 
individual submodels, such as finding the solutions of the equations in the 
space-time model, are used on an interactive basis to supply an operator 
with the quantitative means for making a decision at some selected times. 
This is where the "optimality" that Chuyev discussed in his book must 
come in. Based on a list of criteria which the decision-maker specifies 
(for example, arrival at an objective, friendly loses, enemy loses, 
expenditure of supplies), the operator is supplied with alternatives 
meeting those objectives (if possible) and is then required to choose one. 
This procedure is iterated until a comprehensive variant is attained which 
meets criteria as well as possible. A particularly interesting feature of 
this approach is that the decision-maker gets to redefine his criteria and 
rank their importance as he sees the process develop and understand what 
is possible and what is not. 

3) Since many such operators are required to run the model at the theater 
level and the entire process involves making many similar calculations at 
various levels in the hierarchical structure, a special, dedicated, system 
of software was designed and developed to streamline the operation of the 
System. No details about this software system were given, but it was 
stated that without such software, it would have been difficult or 
impossible to implement the model. On the other hand, this software 
represented the best that was possible in the 1970's in the former Soviet 
Union on very small comruters by modern day standards. 
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5. SEMINAR LISTINGS 

SAN DIEGO STATE UNIVERSITY 
DEPARTMENT OF MATHEMATICAL SCIENCES 

SPECIAL SEMINAR ON 
MATHEMATICAL MODELING AND SYSTEMS 

Professors P. Krasnoschekov and G. Savin, 
Russian Academy of Sciences, Moskow 

MWF 10-12, BAM-207 

TOPICS 
WEEK OF SEPTEMBER 21-23 

Overview of operations research activities at the Computation Center of 
the Russian Academy of Sciences, with a discussion of work they wished 
to present during the coming weeks of the seminar. Historical remarks on 
combat modeling. 

WEEK OF SEPTEMBER 27- OCTOBER 1: 

Modeling of large-scale, continuous media interactions in time and space. 
1. Introduction to models of war interaction. 
2. Derivation of the equations for a combat model in Euler variables 
3. Transformation of equations to Lagrange variables 
4. Relationships to modeling of complex systems, hierarchical design 

problems 

WEEK OF OCTOBER 4-8: 

Modeling of large-scale, continuous media interactions-continued. 
1. Comparison of Lagrange and Euler forms of the equations. 
2. Derivation of the Lebedev relation for movement of the front line. 
3. Critical observations and remarks on combat modeling 
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WEEK OF OCTOBER 11-15: 

Systems of mathematical modeling for the design of large-scale, 
complex processes including combat modeling 

I.Simulation Systems 
2. Synthesis of Systems 
3. Realization of Systems 

WEEK OF OCTOBER 18-22: 

Principles of the mathematical theory related to the design of complex 
technical systems 

1. Design as a problem of multi-criteria optimization 
2. Hierarchical systems of design 
3. Fundamental systems of criteria 

WEEK OF OCTOBER 25-29: 

Mathematical models of Operations Research 
1. Combining models, information and mixed strategies 
2. Efficiency of multi-criteria tasks 
3. Applications to large-scale conflict models 

WEEK OF NOVEMBER 1-5: 

Application of the design-optimization process to the construction of a 
flying object. 

1. Construction of a model 
2. Construction of a designing image 
3. Finding image characteristics 

WEEK OF NOVEMBER 15-17 

Review and analysis of continuous media, space-time equations and their 
rote in a staff model. 

1. Assumptions governing the continuous media model equations. 
2. Synthesis and Reproduction Models for front level operations. 
3. Proposal for new book on combat modeling and military opertions 

research techniques. 
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